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Abstract
Discrete-time evolution operators in integrable quantum lattice models are
sometimes more fundamental objects than Hamiltonians. In this paper, we
study an evolution operator for the one-dimensional integrable q-deformed
Bose gas with XXZ-type impurities and find its spectrum. Evolution operators
give a new interpretation of known integrable systems, for instance, our
system describes apparently a simplest laser with a clear resonance peak in
the spectrum.

PACS numbers: 02.30.Ik, 75.10.Pq
Mathematics Subject Classification: 37K15

The existence of a complete set of commuting operators is the basic principle of quantum
integrability. However, often the commuting set does not provide a distinguished operator
deserving the title of the Hamiltonian for a physical system. In particular, this is the common
feature of quantum models obtained by the quantization of classical equations of motion in
wholly discrete spacetime. Equations of motion define a discrete time translations for classical
variables, a map A(τ, σ ) → A(τ + 1, σ ). Corresponding translation for quantum observables
is produced by an evolution operator,

A(τ + 1, σ ) = UA(τ, σ )U†, UU† = 1. (1)

If the time unity interval coincides with the unity spacing, then there is no small parameter
expansion of U defining a lattice Hamiltonian. The evolution operator becomes the main
object of the lattice quantum mechanics.

Discrete-time evolution operators for quantum chains were considered in many papers.
For instance, the study of the spectrum of the evolution operator was in the focus of the
quantum Liouville theory [1]. In this paper we discuss another example of quantum evolution
system: the one-dimensional q-deformed Bose gas [2, 3] with XXZ-type impurities. The
simple test ‘what evolution operator is doing in the space of states’ will give a new view on
well-known models.
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Quantum mechanics begins with the algebra of observables. In our case, the local algebra
of observables is the q-oscillator [4] with generators B, B†, N:

BB† = 1 − q2N+2, B†B = 1 − q2N, 0 < q < 1. (2)

Below we use the Fock space representation of (2); the Fock vacuum is defined by B|0〉 = 0.
The q-oscillators are the algebra of observables for q-deformed Bose gas. In addition, it is
very convenient to use the q-oscillator representation for the XXZ model [5, 6]. In this paper
we consider the combined chain of three types of q-oscillators,{

Bj,n, B†
j,n, Nj,n

}
: j = 1, 2, 3, n = 0, 1, . . . , N − 1, (3)

where index 3,n stands for the q-Bose gas, indices 1,n and 2,n stand for the oscillator
representation of the XXZ model in the nth site of the combined chain. The quantum Lax
operators are

Mn(u) =
(

qN3,n uB†
3,n

−q−1B3,n uqN3,n

)
(4)

for the q-Bose gas (condition q < 1 is equivalent to the attractive potential), and

Ln(u) =
(

uqN1,n − eiεqN2,n −u eiεB1,nB†
2,n

−q−1B2,nB†
1,n uqN2,n − eiεqN1,n

)
(5)

for the XXZ model. The L operator (5) has the centre

sn = 1
2 (N1,n + N2,n) (6)

with the half-integer spectrum; matrix (5) on the subspace sn = sn is identical to the usual
spin-sn L operator for Uq(ŝl2). Note, on the subspace sn = 0 operator (5) is just the unity
matrix, Ln(u)|sn=0 = (u − eiε)11. The extra parameter ε in (5) is equivalent to an exponential
shift of the spectral parameter u.

The transfer matrix of the model is defined by

t (u) = Trace(M0(u)L0(u)M1(u)L1(u)M2(u)L2(u) · · · MN−1(u)LN−1(u)). (7)

A complete set of commutative operators is given by the decomposition of t (u) and by the
set of charges sn (6). Subjects of our interest are sub-sectors of the extended Hilbert space
corresponding to specified eigenvalues of sn. In particular, if all sn = 0, this is just the pure
one-dimensional q-Bose gas with attractive potential. If s0 = 1/2 and all other sn = 0, this is
the Bose gas with the single impurity. If some of sn = 1/2 and all the other sn = 0 (our final
case), this is the q-Bose gas with some density of impurities.

Our main object, the discrete-time evolution operator, is defined by

UMn(u)Ln(u) = Ln(u)Mn+1(u)U. (8)

Evidently, the transfer matrix (7) commutes with the evolution operator and therefore gives
the integrals of motion. One can rewrite (8) as the map

UqN2,nB†
1,nU−1 = qN3,nB†

1,n − eiεqN1,nB†
2,nB3,n,

UB†
2,nU−1 = B†

1,nB†
3,n + q eiεqN1,n+N3,nB†

2,n,

UqN2,n+1 B†
3,nU−1 = qN1,n+1 B†

3,n+1 − eiεqN3,n+1 B1,n+1B†
2,n+1.

(9)

Corresponding relations for UBj,nU−1 are the conjugation of (9): U is the unitary operator if
q and ε are real. Equation (9) provides in addition Usn = snU and UK = KU, where

K =
∑

n

(N2,n + N3,n). (10)
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Note, map (9) is exactly the tetrahedral map from [6]. All two-dimensional models have
hidden the three-dimensional structure.

Take up now the interpretation of the evolution operator. In what follows, we use

q = e−γ . (11)

We start with the lowest occupation numbers over the total Fock vacuum |0〉. Let U|0〉 = |0〉,
and we consider next the subspace of the Hilbert space with s0 = K = 1. Let us see, what the
evolution operator makes with the state

|ψ1〉 = B†
2,0|0〉. (12)

Applying (9) once, we get

U|ψ1〉 = eiε−γ |ψ1〉 + |ψ0〉 ⊗ |b0〉, (13)

where we use the notation

|ψ0〉 ⊗ |bk〉 = B†
1,0B†

3,k|0〉. (14)

What is happening after τ steps of discrete evolution:

Uτ |ψ1〉 = e(iε−γ )τ |ψ1〉 + e−(iε−γ )|ψ0〉 ⊗
(

τ−1∑
k=0

e(iε−γ )(τ−k)|bk〉
)

. (15)

Suppose, τ is big enough, but

γ τ � 1, ετ � some integer multiple of 2π. (16)

Equation (15) describes the decay of the quasi-stable state |ψ1〉 with the energy ε and width γ .
The second term in (15) is a state with the bosonic wavefunction �(τ, k) = e(iε−γ )(τ−k)—the
speed-of-light right-moving wave radiated by the excited state. Due to (16), the oscillating
term in the wavefunction dominates, and therefore the wave package on the right-hand side
of (15) is the state with the average energy and momentum ε. Note, we may talk about the
energy of the radiated state only if τ in (15) is big enough; this exactly corresponds to the
Heisenberg uncertainty principle. The one-step distance of the lattice may be considered as
the ultra-microscopic scale of the spacetime, while big τ in (15) corresponds to a microscopic
scale.

Thus, the discrete-time evolution operator provides an alternative terminology. We will
call site n of the spin chain with sn = 1/2 as the atom with two energy states: the ground state
|ψ0〉 with zero energy and the excited state |ψ1〉 with the energy ε and width γ . The regime
for γ and ε follows from (16):

γ � ε � 2π. (17)

The spin chain sites with sn = 0 do not provide any effect; these sites are just empty. The Bose
field B†

3,n is identified with the electromagnetic field; the radiated state in (15) is the photon.
The whole system is evidently a kind of chiral laser (photons are radiated to the right only).
Note, the impurities destroy the translation invariance of the system. Scattered and radiated
photons may have momenta, but the atoms are rigidly fixed, and the solid media take up the
recoil momenta of photons.

Consider next eigenstates and eigenvalues of the evolution operator. We consider the
periodical boundary conditions—a ‘toroidal chiral laser’. The eigenstates have the structure
of the superposition of stationary bosonic waves scattering on the atoms (the coordinate Bethe
ansatz). For instance, the one-boson and one-atom eigenstate |�p〉, such that U|�p〉 =
eip|�p〉, is

|�p〉 = −ei(p+ε)(1 − q2)

q eip − eiε
B†

2,0|0〉 + B†
1,0B†

p|0〉, (18)
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where

B†
p =

∑
e−ipkB†

3,k (19)

is the creation operator of the photon. The quantization equation for the momenta of one-
photon states follows from the periodical boundary conditions,

eiNp eip − q eiε

q eip − eiε
= 1. (20)

Since the evolution operator describes only the right-moving photons with dispersion relation
E = p, the momentum p in (19), (20) must be positive.

In general, the spectrum of U is given by

U =
K∏

i=1

ui = exp

{
i

K∑
i=1

pi

}
, (21)

where ui = eipi are the roots of the Bethe ansatz equations

uN
i

∏
n

ui − q2sn eiε

q2snui − eiε
=

∏
j �=i

q−1ui − quj

qui − q−1uj

, i, j = 1, . . . , K. (22)

Here N is the length of the chain, periodical boundary conditions are taken into account, and
K is the eigenvalue of (10) (the number of photons in the laser). In general, sn are arbitrary
eigenvalues of sn, but here we consider sn = 0, 1/2 only. Equation (22) is literally the Bethe
ansatz equation for the transfer matrix (7); relation (21) is the main analytical result of this
paper.

The eigenstates corresponding to (22) may be interpreted in terms of the photon creation
operators in momentum space (19). If all pi are real and different, the photonic counterpart of
the eigenstate is a slightly modified state B†

p1 B†
p2 . . . B†

pK
|0〉. In addition to real pi , the Bethe

ansatz equation (22) has solutions with complex pi (strings of the Bethe ansatz equations),
for instance p1 � p + iγ and p2 � p − iγ . The bosonic counterpart of such eigenstate is∑

k,k′ e−ip(k+k′)−γ |k−k′|B†
3,kB†

3,k′ |0〉. This is the bound state for big γ , but in our regime (17)

it may be understood as properly γ -regularized state B†2
p|0〉. Analogously, the highest bound

states correspond to the highest occupation numbers B†n
p|0〉. The important point is that we

have to solve the Bethe ansatz equations implying the right-moving condition Re(pi) > 0.
Turn finally to the thermodynamical limit N,K → ∞. Let the number of two-states

atoms be N ′ < N ; their density n = N ′/N is not zero at the limit. The structure of the
infrared part of spectrum is the subject of separate investigation since the lowest energy level
corresponds to the pure Bethe ansatz string.

In this paper we consider the ‘optical wave band’ p ∼ ε. Assume that the Bethe roots
ui = eipi , Im(pi) = 0, form a dense distribution �(pi)

−1 = N(pi+1−pi) near pi ∼ ε. Assume
in addition that we can neglect in this region densities of photons with higher occupation
numbers (complex pi). The standard Bethe ansatz technique provides the Hulthen integral
equation for the density �(p):

1 − 2π �(p) =
∫

dp′ �(p′)
d

dp
S(p, p′) + n

d

dp
F(p), (23)

where

eiS(p,p′) = eip+γ − eip′−γ

eip−γ − eip′+γ
, eiF(p) = eip−γ − eiε

eip − eiε−γ
. (24)
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Solving (23) in the optical wave band, we neglect the contribution of the radio band since
d

dp
S(p, p′) → 0 when |p − p′| 
 γ . The solution is

�(p) � (4π)−1 +
n

4γ

1

cosh π(p−ε)

2γ

, (25)

what is evidently the laser resonance peak over the white noise. Accounting of the radio
band and complex pi may modify the white noise term. The resonance term has exactly the
XXX-spin chain structure, so that the number of resonant photons in the stationary state is
half of the number of atoms. Additionally, pumped energy does not increase the density of
resonant photons; it dissipates into the white noise.

Acknowledgment

I would like to thank M Bortz, J de Gier and V Mangazeev for fruitful discussions.

References

[1] Faddeev L D, Kashaev R M and Volkov A Yu 2001 Strongly coupled quantum discrete Liouville theory: I.
Algebraic approach and duality Commun. Math. Phys. 219 199–219

Faddeev L D and Kashaev R M 2002 Strongly coupled quantum discrete Liouville theory: II. Geometric
interpretation of the evolution operator J. Phys. A: Math. Gen. 35 4043–8

[2] Bogoliubov N M and Bullough R K 1992 A q-deformed completely integrable Bose gas model J. Phys. A: Math.
Gen. 25 4057–71

[3] Bogoliubov N M, Rybin A V and Timonen J 1994 An integrable q-deformed model for bosons interacting with
spin impurities J. Phys. A: Math. Gen. 27 L363–7

Bogoliubov N M, Izergin A G and Kitanine N A 1998 Correlation functions for a strongly correlated boson
system Nucl. Phys. B 516 501–28

[4] Damaskinsky E V and Kulish P P 1992 Deformed oscillators and their applications J. Sov. Math. 62 2963–86
[5] Macfarlane A J 1989 On q-analogues of the quantum harmonic oscillator and the quantum group SU(2)q

J. Phys. A: Math. Gen. 22 4581–8
Biedenharn L C 1989 The quantum group SUq(2) and a q-analogue of boson operators J. Phys. A: Math. Gen.

22 L873–8
[6] Bazhanov V V and Sergeev S M 2006 Zamolodchikov’s tetrahedron equation and hidden structure of quantum

groups J. Phys. A: Math. Gen. 39 3295–310

http://dx.doi.org/10.1007/s002200100412
http://dx.doi.org/10.1088/0305-4470/35/18/304
http://dx.doi.org/10.1088/0305-4470/25/14/020
http://dx.doi.org/10.1088/0305-4470/27/11/003
http://dx.doi.org/10.1016/S0550-3213(98)00038-8
http://dx.doi.org/10.1007/BF01097496
http://dx.doi.org/10.1088/0305-4470/22/21/020
http://dx.doi.org/10.1088/0305-4470/22/18/004
http://dx.doi.org/10.1088/0305-4470/39/13/009

	Acknowledgment
	References

